(0) Obligation:
Clauses:
num(0).
num(X) :- ','(no(zero(0)), ','(p(X, Y), num(Y))).
p(0, 0).
p(s(X), X).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).
Query: num(g)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
numA(0).
Query: numA(g)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
numA_in_g(0) → numA_out_g(0)
The argument filtering Pi contains the following mapping:
numA_in_g(
x1) =
numA_in_g(
x1)
0 =
0
numA_out_g(
x1) =
numA_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
numA_in_g(0) → numA_out_g(0)
The argument filtering Pi contains the following mapping:
numA_in_g(
x1) =
numA_in_g(
x1)
0 =
0
numA_out_g(
x1) =
numA_out_g
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
numA_in_g(0) → numA_out_g(0)
The argument filtering Pi contains the following mapping:
numA_in_g(
x1) =
numA_in_g(
x1)
0 =
0
numA_out_g(
x1) =
numA_out_g
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
numA_in_g(0) → numA_out_g(0)
The argument filtering Pi contains the following mapping:
numA_in_g(
x1) =
numA_in_g(
x1)
0 =
0
numA_out_g(
x1) =
numA_out_g
We have to consider all (P,R,Pi)-chains
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,R,Pi) chain.
(8) YES